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breaks genome cost barrier
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Now the $1,000 individual genome is here… but



All variants are currently detected relative to a single human 

reference genome. A typical person is not the reference.
A typical person has

• Avg. of 5 million isolated single 

DNA base variations different

from the reference (out of 3 

billion)

• Avg. of 20 million DNA bases in 

large segments of DNA that are 

not present in the same form in 

the reference genome

• Many of these variants not 

currently assayed accurately: 

reference allele bias



Vision - The Human Pangenome

Instead - imagine mapping to a reference structure that contains all common 

variation: a pangenome graph
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This Talk

● Part 1: How do we make long-read reference quality assembly efficient and 

routine, so that we can create the genomes for the human pangenome

● Part 2: How do we build the pangenome and use it?

5



6

Genome assembly bottlenecks

• Need for revolution in generation of high-quality 

genomes to ensure all variation is captured, 

bottlenecks:

○ Sequencing cost for high quality

○ Sequencing speed for high quality

○ Scalable and cheaper informatics
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Solution

• Nanopore 100kb+ sequencing

• Scalable algorithms and 

informatics
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Nanopore sequencing

Data acquisition for 11 genomes in 9 days

(>60x total coverage)
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7x enrichment of reads >100kb using Circulomics SRE

Short Read Eliminator Kit (https://www.circulomics.com)
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Read N50 improvement is reproducible
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https://github.com/human-pangenomics/hpgp-data

Individual genomes 
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PromethION sequencing 

throughput

Total throughput (Gb)
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Median alignment identity is 90%

Alignment identity = matches / (matches + mismatches + insertions + deletions)

Mode: 93%

Median: 90%
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Individual genomes 

Guppy 2.3.5 flip flop basecaller



Scalable assembly and 

polishing tools

https://upload.wikimedia.org/wikipedia/commons/2/22/MtShasta_aerial.JPG
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Pipeline



16

Shasta – a nanopore de novo long read assembler 

https://github.com/chanzuckerberg/shasta

• New de novo assembler tailored for long reads and parameterized for ONT data - principally

developed by Paolo Carnevali at CZI

• Beautiful new algorithms (https://chanzuckerberg.github.io/shasta/ComputationalMethods.html)

○ Use run-length encoding (RLE) throughout to compress homopolymer confusion - the

dominant source of error in ONT reads

○ Uses novel high-cardinality marker space representation for super efficient overlap alignment

○ Does everything in memory (requires 1.5TB of memory for 60x human)

○ Outputs GFA, intent for whole pipeline to use GFA to represent ambiguities

https://chanzuckerberg.github.io/shasta/ComputationalMethods.html
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Run Length Encoding (RLE)
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Marker Representation
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Marker Representation
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Assembly at a fraction of time and cost
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Shasta GPU Acceleration 
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Comparable contig NG50 and lower misassemblies

shasta flye canu + 10X wtdbg2

Number of misassemblies 1160 5580 6093 4164
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Shasta assemblies are reproducible

Median contig NG50 = 23 Mb
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Two-step polishing of assemblies

https://github.com/UCSC-nanopore-cgl/marginPolish

1. MarginPolish 2. HELEN

https://github.com/kishwarshafin/helen

A graph-based alignment polisher A DNN-based consensus sequence polisher
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Polishing at a fraction of time and cost
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MarginPolish and HELEN outperform other polishers

Assembler Polisher Diploid
(HG00733)

Haploid 
(CHM13)

- 98.78% 99.37%

Racon4x 99.16% 99.50%

Racon4x+ Medaka 99.42% 99.58%

MarginPolish 99.41% 99.62%

MarginPolish + HELEN 99.47% 99.70%

Shasta
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Improvements in homopolymer length predictions

Guppy basecaller Shasta

Shasta

+ MarginPolish

Shasta

+ MarginPolish

+ HELEN
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Without HiC
With HiC

Chromosome-level scaffolding using HiC data



Near term future

https://upload.wikimedia.org/wikipedia/commons/2/22/MtShasta_aerial.JPG



30

The near future: A reference-quality human-scale 

genome in ~7 days for 

< $10K
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Key next steps 

• Faster basecalling (ONT)

• Haplotype phasing (UCSC, CZI)

• Exploring real-time applications

• Integrating into human reference pan-

genomes
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Mapping everybody’s genome to one reference 

genome creates significant bias

Sequencing and de novo assembly of 150 

genomes from Denmark as a population 

reference

Lasse Maretty et al. 2017

Danish reference genome project

Korean reference genome project

De novo assembly and phasing of a 

Korean human genome

Jeong-Sun Seo et al. 2016

...

• Mapping is biased against 

variation

• Structural variants particularly 

hard to map 

• Risk some genetic variants from 

other subpopulation groups 

inaccurately represented

• Bias is unacceptable for global  

biomedicine

https://www.nature.com/articles/nature23264#auth-1
https://www.nature.com/articles/nature20098#auth-1


Goals: 

• Develop next generation human genetic reference that includes known 

variation from all human ethnic populations

• Build the software required to switch biomedicine over to using this new human 

genetic reference

Human Pangenome Project

CREDIT: Kiran Garimella and Benedict Paten



Merging diverse genomes into one mathematical map

The major histocompatibility complex: Kiran Garimella and Benedict Paten



Zooming in, you start to see structure of local genetic 

variants



At base level, we assign unique identifiers to 

genetic variants to enable precision



Variation Graphs – The Essentials

Joins can connect either side of a sequence (bidirected edges)

Walks encode DNA strings, with side of entry determining strand



variation 

graph

another

variation 

graph

The VG group is building a software ecosystem 

for pangenomics

• Addresses all essential operations on 

genome graphs

https://github.com/vgteam/vg
doi.org/10.1101/234856

https://github.com/vgteam/vg


The first human genome variation map combines 

information from 1000 human genomes

View of genomes (gray to black) in an actual genome map, and DNA sequencing 

reads (colored worms) from a newly sequenced individual mapped to it



Genome Graph Models 

Naturally Represent All 

Variant Types

Substitution



Genome Graph Models 

Naturally Represent All 

Variant Types

Insertion or 

deletion



Genome Graph Models 

Naturally Represent All 

Variant Types

Duplication (top path traverses same nodes multiple times)



Genome Graph Models 

Naturally Represent All 

Variant Types

Inversion (red path traverses reverse complement)



Human Read Mapping with VG

● Simulation study to GRCh38 / Graph using 1000 Genomes (80 Million Variants)

● 10 million read pairs (2x150mers)

● ROC stratified by MAPQ

● Reads sampled from Ashkenazi Jewish sample not in 1000 Genomes 
Garrison et al. bioxriv: doi.org/10.1101/234856



Human Read Mapping with VG - Indel Allele 

Balance

Garrison et al. bioxriv: doi.org/10.1101/234856

InsertionDeletion



Yeast Mapping with VG - A More Polymorphic Example 

Sample Genome

Pan genome

Reference 

genome

Garrison et al. bioxriv: doi.org/10.1101/234856



VG - Take Homes

● VG is practical for mapping human genome scale 

samples against graph with 80 Million point variants

● First tool to work with arbitrary graphs (cycles, copy 

number variants are possible)

● Provides interchange formats and many, many utilities
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• Mapping is central to genomics, and reference genomes are perhaps the most 

important data structure in genomics 

• With vg we can generalize reference genomes to reference genome graphs, 

and practically map to a population cohort instead, alleviating bias

• It’s not about replacing the reference with a graph, but with a population cohort

Summary



Embedding Haplotypes

• Genome graphs do not encode linkage

• To restrict linkage, natural solution is to duplicate paths:

• But duplication creates mapping ambiguity



Embedding Haplotypes

• But note, there is a natural homomorphism (projection):



Embedding Haplotypes

• Instead maintain projection from haplotypes to graph:



Embedding Haplotypes

• The Positional Burrows Wheeler Transform (PBWT)

Figure borrowed from “Richard Durbin, Efficient haplotype matching and storage using the positional Burrows–Wheeler transform (PBWT), Bioinformatics, 2014”

• Reversible, compressible, enables efficient indexed queries

PBWT[:k]



Embedding Haplotypes

• The Graph Positional Burrows Wheeler Transform (gPBWT)

From “Novak et al, A Graph Extension of the Positional Burrows-Wheeler Transform and its Applications (PBWT), WABI 2016”

gPBWTk[]

• Reversible, compressible, enables efficient indexed queries



gPBWT Performance

• Experiment:
• chr22
• 50,818,468 bp
• 5004 Haplotypes

• Result:
• 356 MB gPBWT + vg graph
• 0.011 bits per base - 200x 

compression
• ~336 GB for whole genome 

w/80 million point variants 
@ 100,000 diploid genomes



gPBWT → GBWT

● Jouni Siren (now at UCSC!) showed gPBWT can be 
encoded as high cardinality alphabet BWT in which 
symbols in input strings represent nodes in VG graph

● Call it Graph Burrows Wheeler Transform (GBWT)
● Implemented in VG:

○ Whole 1000 Genomes Graph construction on one 
machine in one day

○ Half space of gPBWT (14gb for entire index for 1000G)

Siren et al. https://arxiv.org/pdf/1805.03834.pdf



Haplotype Probabilities

• Li & Stephens: Efficiently compute P(h|H), where h is 
haplotype and H is population



Haplotype Probabilities

• Graph Li & Stephens: Efficiently compute P(x|H), where x is 
haplotype walk in a genome graph



Haplotype Probabilities

• Applied to vg mapped reads:



Richer Graphs: More Is Not Necessarily More

● Adding variation into a 
graph has both positive 
and negative effects on 
mapping

● From the HiSat folks: 

True Graph

AF > 0.03 

Filtered 

1KG Graph

1KG Graph -

True 

Variants

GRCh38



Map to the population, not the graph

● P(r | G) != P(r | H)
● Accounting for 

haplotypes with 
all variants better 
than mapping to 
any graph

● ~30% fewer FP 
mappings relative 
to BWA
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Workflow

Shasta MarginPolish HELEN

Product Version

Device PromethION Alpha-Beta

Flongle

Flow Cells FLO-PRO002

FLO-FLG106

Kits Ligation Sequencing Kit 

Circulomics SRE

Puregene

Data analysis Shasta

MarginPolish

HELEN

minimap2


